
Open file format for MR sequences

Version 1.5.0(DRAFT)

Maxim Zaitsev
Stefan Kroboth
Kelvin Layton

University Medical Centre Freiburg
maxim.zaitsev@uniklinik-freiburg.de

This file specification is part of the Pulseq project:
http://pulseq.github.io/http://pulseq.github.io/

This file format is licensed under the Creative Commons Attribution 4.0
International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0/

http://pulseq.github.io/
http://pulseq.github.io/
 http://creativecommons.org/licenses/by/4.0/

Contents

1 Introduction1 Introduction 2

1.1 Example1.1 Example . 3

2 Specification2 Specification 5

2.1 Overall Description2.1 Overall Description . 5

2.2 Identification numbers2.2 Identification numbers . 6

2.3 Version2.3 Version . 6

2.4 Signature2.4 Signature . 7

2.5 Definitions2.5 Definitions . 7

2.6 Time raster, temporal alignment and shape sampling conventions2.6 Time raster, temporal alignment and shape sampling conventions 9

2.7 Blocks2.7 Blocks . 9

2.8 Events2.8 Events . 10

2.8.1 RF2.8.1 RF . 10

2.8.2 Gradients2.8.2 Gradients . 12

2.8.3 ADC2.8.3 ADC . 14

2.8.4 Extensions2.8.4 Extensions . 15

2.9 Shapes2.9 Shapes . 18

2.9.1 Compression2.9.1 Compression . 19

3 Binary files3 Binary files 20

3.1 File and section codes3.1 File and section codes . 21

4 Source code4 Source code 21

5 Examples5 Examples 22

5.1 Free induction decay5.1 Free induction decay . 22

5.2 Point-resolved spectroscopy (PRESS)5.2 Point-resolved spectroscopy (PRESS) 23

5.3 Gradient echo5.3 Gradient echo . 24

1

Revision History

Version Date Description

1.0 26 Jun 2014 Draft specification
1.01 11 Jun 2015 Included draft of binary specification
1.1.0 11 Jul 2017 Changed versioning scheme
1.2.0 06 Jul 2018 Events can now be delayed individually;

Delay events and other events overlap within blocks
1.2.1 13 Dec 2018 Matlab code does not use zero-filling prior to the

actual RF shape to account for RF dead time and
uses delay instead. Interpreter code also does not
attempt to detect RF zero-filling.

1.3.0 02 Jul 2019 Support for generic extensions:
added extensions column to the event table, which
references the new [extensions] section;
added support for one extension:
triggers (including two types: input and output).

1.3.1 25 Sept 2020 Added support for the LABEL extension, updated figures.
1.4.0 7 Jul 2021 Substantial revisions of the file format:

added required definitions;
we now explicitly specify sampling and raster alignment
conventions;
flexible shape timing for arbitrary gradients and RF pulses;
explicit block duration;
removed [DELAYS];
added uncompressed shape option;
added signature section.

1.4.1 16 Feb 2023 New flags to the LABEL extension added.
1.5.0 14 Feb 2025 Substantial format revision, including:

RF pulses define RF center and untended use fields;
RF and ADC objects declare an additional frequency
offset in units of PPM;
ADC objects optinally declare phase offset per sample
as a vector;
Extension ”Soft Delay” is introduced.
TODO: update figures and examples.

1 Introduction

The purpose of this file format is to compactly represent a magnetic resonance
(MR) sequence in an open and vendor independent manner. Sequences for
both NMR spectroscopy and MRI can be represented. The format is intended

2

for research and educational purposes and currently omits complex sequence
features such as logical coordinate-frame transformations. The format has been
developed with the following design goals:

1. Human-readable: The basic sequence structure should be easily under-
stood without processing.

2. Easily parsed: The format should be easy for a computer program to
parse without the need for external libraries.

3. Vendor independent: The sequence format must not contain constructs
specific to a particular hardware manufacturer.

4. Compact: The sequence should avoid redundant definitions. As such,
re-use of existing definitions at different times is inherent in the sequence
format.

5. Low-level: The format should be sufficiently low-level. This allows for
maximum flexibility of sequence specifications and does not limit the high-
level design tools.

The first goal of human readability necessitates a text-file format. The file for-
mat is intended to describe a sequence that can be run on scanner hardware.
Therefore, the second goal of machine readability ensures that the file can be
read and interpreted without the use of external libraries that might be un-
available on different platforms. This prohibits the use of an existing markup
language like XML, which are not straightforward to parse. Further, units that
are inherently hardware dependent have been avoided, such as ‘Volts’, ‘Tesla’
or ‘DAC units’.

1.1 Example

Before defining the detailed specification, a simple example is presented to
demonstrate the main structure of a sequence. Below is a simple FID experiment
with RF pulse, delay and ADC readout.

Pulseq sequence file

Created by MATLAB mr toolbox

[VERSION]

major 1

minor 5

revision 0

[DEFINITIONS]

AdcRasterTime 1e-07

BlockDurationRaster 1e-05

3

GradientRasterTime 1e-05

Name fid

RadiofrequencyRasterTime 1e-06

Format of blocks:

NUM DUR RF GX GY GZ ADC EXT

[BLOCKS]

1 42 1 0 0 0 0 0

2 500 0 0 0 0 0 0

3 10244 0 0 0 0 1 0

Format of RF events:

id amp mag_id phase_id time_id center delay freqPPM phasePPM freq phase use

.. Hz us us ppm rad/MHz Hz rad ..

Field 'use ' is the initial of: excitation refocusing inversion saturation

preparation other undefined

[RF]

1 833 .333 1 2 0 150 100 0 0 0 0 e

Format of ADC events:

id num dwell delay freqPPM phasePPM freq phase phase_id

.. .. ns us ppm rad/MHz Hz rad ..

[ADC]

1 1024 100000 20 0 0 0 0 0

Sequence Shapes

[SHAPES]

shape_id 1

num_samples 300

1

0

0

297

shape_id 2

num_samples 300

0

0

298

[SIGNATURE]

Type md5

Hash a4bfd1bd48a111f4e01219e183f4aea5

4

2 Specification

2.1 Overall Description

1 833.3 1 2 0 150 100 0 0 0 e

Blocks

1 42 1 0 0 0 0 0
2 500 0 0 0 0 0 0
3 10244 0 0 0 0 1 0

RF

1 1024 100000 20 0 0 0 0ADC

amplitude mag phase delay freq ph off.time id center ppm use

num dwell delay freq ph off.ppm ph id

Events

Shapes id 1
num 300
1
0
0
297

compressed
shape
data

duration rf gx gy gz adc ext

Figure 1: Visualisation of the hierarchical structure of the file format for an FID
example.

The sequence description consists of a three-level hierarchical structure as demon-
strated in Figure 11. This ensures a compact representation, since repeating
events (or shapes) are only declared once.

Blocks At the top level the sequence is specified by a number of blocks. Each
block refers to one or more event(s) to be executed simultaneously.

Events The definition of events are dependent on the type (e.g. gradient, ADC)
but some types may refer to one or more basic shapes.

Shapes A shape is a compressed list of samples. The uncompressed samples
can describe, for example, the RF pulse shape or an arbitrary gradient
shape. The compression scheme is a type of run-length encoding.

Comments are specified by a line starting with a hash.

This is a comment

The numeric values are declared exactly as described below with storage defined
by the value type. In general, integer types are stored as 64-bit unsigned
integers while floating-point numbers are in the 64-bit IEEE 754 floating-
point format. Exceptions are <id> values, which are 32-bit integers. Shapes are
stored as 32-bit short floats.

5

2.2 Identification numbers

A key idea of the hierarchical sequence structure is the use of ID numbers to refer
to objects defined one level below in the hierarchy. For example, blocks contain
the ID of one or more event(s). Likewise, events may contain the ID of one or
more shape(s). Restrictions are placed on these IDs to ensure consistency:

� IDs must be positive integers.

� The ID of each shape must be unique.

� The ID of events within a single class must be unique. For example, an
RF event and delay event may both use an ID of 1, since the events are
of a different class. An exception is the [GRADIENTS] and [TRAP] events
where the union of these sets must contain unique event IDs.

� The ID of 0 for a time shape corresponds to the ”default”, meaning an
incremental time sampling with the corresponding default time raster.

� There are no restrictions on the ordering of IDs, although sequential or-
dering is often implemented.

� There are no restrictions on the first ID of an event class.

2.3 Version

The versioning scheme is ⟨major⟩.⟨minor⟩.⟨revision⟩.

[VERSION]

major ⟨major⟩
minor ⟨minor⟩
revision ⟨revision⟩

Providing the version of the standard is vital for sequence execution. If this sec-
tion is not provided, the interpreter sequence may either refuse execution or as-
sume version 1.0.0. It is recommended to reject Pulseq files without [VERSION]
section.

Example:

[VERSION]

major 1

minor 5

revision 0

6

2.4 Signature

The Pulseq file may end with an optional section [SIGNATURE] as in the example
below:

[SIGNATURE]

This is the hash of the Pulseq file , calculated right before

the [SIGNATURE] section was appended to the file

Type md5

Hash 237 b85c2aa46ba98076359cde263d6ee

The signature is generated by hashing the readily exported file with a corre-
sponding algorithm (in this example md5sum) and appending the [SIGNATURE]
section. The new line character preceding the keyword [SIGNATURE] is part of
the signature and needs to be stripped away for the signature verification. The
[SIGNATURE] section must contain two following fields along with any additional
information in the format identical to that of [DEFINITIONS] (see below).

Tag Type Description

Type string ID of the hashing algorithm (e.g. md5, sha1 or sha256)
Hash string Hash value produced by the hashing function in the hexadec-

imal format

2.5 Definitions

The sequence may contain general definitions indicated by the [DEFINITIONS]

keyword. Each definition is defined on a new line with the following format

<key > <value >

This defines a list of user-specified key/value pairs.

Tag Type Description Units

<key> text Name of user definition –
<value> any Value of definition –

The <value> field is separated by a single space or tab character from <key>

and is terminated at the end of the line. Any (additional) white space at the
beginning and at the end of <value> is ignored. The <key> field cannot contain
any white space caracters.

Example:

7

[DEFINITIONS]

AdcRasterTime 1e-07

BlockDurationRaster 1e-05

GradientRasterTime 1e-05

RadiofrequencyRasterTime 1e-06

FOV 0.256 0.256 0.004

Name epi

TE 0.005

TR 0.01

TotalDuration 0.04268

Starting from the Pulseq format revision 1.4.0, the following definitions are re-
served, some of which are optional, whereas the definitions labeled as required
are compulsory.

Definition Description Status

GradientRasterTime Default raster time (dwell time) of
the shaped gradient events, speci-
fied in seconds

required

RadiofrequencyRasterTime Default raster time (dwell time) of
the radio-frequency pulse shapes,
specified in seconds

required

AdcRasterTime The value defining the alignment
of the ADC dwell times; ADC
dwell time must be integer mul-
tiple of the specified AdcRaster-
Time; AdcRasterTime is specified
in seconds

required

BlockDurationRaster The value defining the alignment
of the block durations, specified
in seconds; the physical block
duration must be integer multi-
ple of the specified BlockDura-
tionRaster; Block duration in the
[BLOCKS] section are specified in
the units of BlockDurationRaster

required

Name Human-readable name of the se-
quence

optional

FOV Field of view specified in meters
in x, y and z directions given as a
space-separated list of numbers

optional

TotalDuration Total duration of the sequence is
seconds

optional

It is important to note that all definitions that are not required are optional and
do not affect the basic sequence execution. Precise timing is given by the low-

8

level specification of events. The definitions section may be used for arbitrary
user-specific purposes, including attaching metadata or hardware-dependent pa-
rameters. Some Pulseq file interpreters use optional Definitons to make decisions
about the sequence execution or aid user parameter choises on the scanner.

2.6 Time raster, temporal alignment and shape sampling
conventions

Accurate timing is essential for NMR and MRI experiments. To guarantee un-
ambiguous time definition Pulseq operates at discrete time raster. Depending
on the particular hardware implementation details different electronic compo-
nents may have different clock resolutions and correspondingly different raster
times.

For understanding the time raster alignment it is important to differentiate be-
tween the edges and centers of the time raster steps. All blocks and events are
aligned to the corresponding edges of the time raster. Block duration is required
to be multiple of BlockDurationRaster, therefore each block can only start and
end at the edges of the block duration raster. Gradient events may only start
and end at time points which are multiple of GradientRasterTime, that is at the
edges of GradientRasterTime; for trapezoid events, ramp times and plateau du-
ration may also only be equal to multiples of GradientRasterTime. In contrast
to that, any default sampling points (e.g. sampling points of arbitrary-shape
gradients) are aligned to the centers of the corresponding raster steps. The
same convention applies to the default RF shape sampling and ADC sampling
points. This means that the time of the n-th point on the RF pulse shape, gradi-
ent shape or ADC sampling point can be calculated as tn = tstart+∆t(0.5+n).
We will eventually include some figures and diagrams to this section to ex-
plain this important concept, but for now please refer to the slide set at:
https://github.com/pulseq/pulseq/blob/master/doc/pulseq shapes and times.pdfhttps://github.com/pulseq/pulseq/blob/master/doc/pulseq shapes and times.pdf.

2.7 Blocks

The section containing sequence blocks is declared with the [BLOCKS] keyword.
Each subsequence line declares a single block specified by a duration and a list
of six event IDs. An ID of 0 indicates no event.

<id> <duration > <rf> <gx > <gy> <gz> <adc > <ext >

Each non-zero value among the six tags represents the ID of the corresponding
event.

9

https://github.com/pulseq/pulseq/blob/master/doc/pulseq_shapes_and_times.pdf

Tag Type Description

<id> integer ID of the sequence block
<duration> integer duration of the current block in units of

BlockDurationRaster

<rf> integer ID of the RF event
<gx> integer ID of the gradient event on the X channel
<gy> integer ID of the gradient event on the Y channel
<gz> integer ID of the gradient event on the Z channel
<adc> integer ID of the ADC event
<ext> integer ID of the extension table entry

The sequence must declare at least one block. Any non-zero number of blocks
may be defined. The blocks are executed sequentially. The duration of each
block is defined explicitly by the second field of the block description. No event
comprising this block is allowed to last longer than the specified block duration.
The interpreters must to throw an error, should they detect such condition. X,
Y and Z refer to physical scanner gradient channels. Block duration may be
zero, e.g. for blocks containing only extension events with zero durations such
as data labels. A block with nonzero duration containing no nonzero event IDs
is a delay block. Interpreters must gracefully ignore delay blocks of 0 duration.

Example:

[BLOCKS]

1 319 1 0 0 2 0 0

The block above is the first in the sequence which has a duration of 319*BlockDurationRaster
and contains an RF pulse with ID of 1 and a z-gradient pulse with ID of 2. The
block has no X gradient, Y gradient or ADC events, indicated by zero IDs and
also no extension is specified.

2.8 Events

Events are defined in sections, each starting with one the following keywords:
[RF], [GRADIENTS], [TRAP], [ADC] or [EXTENSIONS]. Each event is specified
on a single line and contains an ID followed by type-specific definition.

2.8.1 RF

The RF section is declared with the [RF] keyword. Following this declaration,
each RF event is specified by a single line containing seven numbers.

10

<id> <amp > <mag_id > <phase_id > <time_id > <delay > <freq > <phase >

The specifiers are

Tag Type Description Units

<id> integer ID of the RF event –
<amp> float Peak amplitude Hz
<mag_id> integer Shape ID for magnitude profile –
<phase_id> integer Shape ID for phase profile –
<time_id> integer Shape ID for the time sampling

points, specified in the units of
RadiofrequencyRasterTime; 0 means
default time raster

–

<center> float Time point relative to the beginning of
the RF shape at which the effective ro-
tation takes place

µs

<delay> integer Delay before starting the RF pulse µs
<freq_ppm> float Frequency offset relative to the main

system’s frequency
ppm

<phase_ppm> float Phase offset proportional to the main
system’s frequency

rad/MHz

<freq_off> float Frequency offset in absolute units Hz
<phase_off> float Phase offset rad
<use> char Intended use fo the RF pulse; it is the

initial of one of: excitation, refocus-
ing, inversion, saturation, preparation,
other or undefined

-

Please note that for the calculation of the final frequency and phase offsets the
contributions from <freq_ppm> and <freq_off> (or <phase_ppm> and <phase_off>)
are added together. Prior to the addition <freq_ppm> and <phase_ppm> are
weighted with the current system frequency of the active nucleus, expressed in
units of MHz.

Example:

[RF]

1 550 1 2 0 1000 100 0.000 0.0000 0.000 0.000 e

2 130 3 4 0 4000 100 -3.350 0.0841 0.000 0.000 s

In the example above, the RF pulse ID of 1 is the excitation pulse with the peak
amplitude of 550Hz and a delay of 100 µs. The magnitude and phase profiles
are defined with the shapes of ID 1 and 2, respectively, using the default time
axis sampling with a dwell time of RadiofrequencyRasterTime. The effective
center of this RF pulse is located 1000 µs away from the start of the RF shape

11

and the pulse does not have any frequency or phase offset. The RF pulse with
ID of 2 is a saturation pulse with the peak amplitude of 130Hz and also a delay
of 100 µs, that uses shape IDs 3 and 4 for the magnitude and phase, respec-
tively. It is a fat saturation pulse as can be seenfrom the <freq_ppm> of -3.35
ppm. The corresponding <phase_ppm> value of 0.0841 rad/MHz is introduced
to compensate for the phase due to the frequency offset, leading to the phase
at the RF pulse center of 0.

2.8.2 Gradients

Gradient events are declared in two sections. Arbitrary gradients are in a section
declared with the [GRADIENTS] keyword. Each line in the section is an arbitrary
gradient specified by four numbers,

<id> <amp > <first > <last > <shape_id > <time_id > <delay >

Trapezoidal gradients are in a section declared with the [TRAP] keyword. Each
line in the section is a trapezoidal gradients specified by six numbers,

<id> <amp > <rise > <flat > <fall > <delay >

The specifiers are

12

Tag Type Description Units

<id> integer ID of the gradient event –
<amp> float Peak amplitude Hz/m
<first> float The amplitude of the gradient at the start

of the gradient. Only relevant for the ar-
bitrary gradients (shaped gradients and ex-
tended trapezoids)

Hz/m

<first> float The amplitude of the gradient at the end of
the gradient. Only relevant for the arbitrary
gradients

Hz/m

<shape_id> integer Shape ID for arbitrary gradient waveform –
<time_id> integer Shape ID for the time sampling points, spec-

ified in the units of GradientRasterTime; 0
means default time raster; -1 means 1/2 of
the default time raster (gradient oversam-
pling case)

–

<rise> integer Rise time of the trapezoid µs
<flat> integer Flat-top time of the trapezoid µs
<fall> integer Fall time of the trapezoid µs
<delay> integer Delay before starting the gradient event µs

The gradient ID must be unique across both arbitrary and trapezoid gradients.
That is, a trapezoid gradient cannot have the same ID as an arbitrary gradient.

Example:

[GRADIENTS]

1 790127 0 -550073 6 0 980

2 793249 0 574045 7 -1 980

3 -550073 -550073 0 8 9 0

4 574045 574045 0 8 9 0

[TRAP]

5 25000 30 940 30 100

6 20066 .89 10 980 10 100

The example above contains six gradients: two arbitrary gradients with peak
amplitudes of approximately 790kHz/m (in fact this is a center-out spiral read-
out). The first one has shape ID 6 and time shape ID of 0, which means the
shape ID 6 contains gradient samples according to the convention stated in
subsection 2.6subsection 2.6, e.g. sampled at the centers of the gradient raster cells. The
gradient starts with a zero amplitude but ends at the amplitude of -550kHz/m.
The second shaped gradient is similar, but has a time shape ID of -1, meaning
that the shape ID 7 is defined with the oversampling (e.g. it contains N-1 addi-
tional points between the nominal samples sampled at the gradient raster cell
edges). Normally yo don’t combine oversampled and non-oversampled gradients
like that, here it is given as a toy example. The gradient with ID 2 ends at the
amplitude of 574kHz/m. Because both these gradients end at non-zero values,

13

they need to be aligned to the end of the block, which is achieved in this example
by the start delay of 980 µs. They also require additional ’ramp down’ gradients
in the next block, which realized in this example by gradient objects with IDs
3 and 4. Here gradient with ID 3 starts at -550kHz/m and ends at 0 and has a
shape described by the shape ID of 8 and time ID of 9. Gradients that start at
non-zero values must be aligned to the beginning of the block, meaning that the
start delay of such gradients must be 0. Gradient with ID 4 is the other ’ramp
down’ gradient, defined analogously. Note that both these gradients share the
shape and time IDs. The example als defines two trapezoid gradients (IDs 5
and 6) with duration 1ms specified by amplitude, rise time, flat-top time and
fall time. Both trapeyoid gradients have a delay of 100µs.

2.8.3 ADC

The ADC section is declared with the [ADC] keyword. Each line in the section
is an ADC event specified by six numbers,

<id> <num > <dwell > <delay > <freq_ppm > <phase_ppm > <freq > <phase > <phase_shape_id >

The specifiers are

Tag Type Description Units

<id> integer ID of the ADC event –
<num> integer Number of samples –
<dwell> float The ADC dwell time ns
<delay> integer Delay between start of block and first

sample
µs

<freq_ppm> float Frequency offset of ADC receiver rela-
tive to the system frequency

ppm

<phase_ppm> float Phase offset of ADC receiver that is
proportional to the system frequency

rad/MHz

<freq> float Frequency offset of ADC receiver Hz
<phase> float Phase offset of ADC receiver rad

The duration of the ADC readout is given by the product of <num> and <dwell>

The final phase and frequency coffsets are calculated as sums of the correspond-
ing frequency-dependent and frequency-independent contributions. Prior to the
addition <freq_ppm> and <phase_ppm> are weighted with the current system
frequency of the active nucleus, expressed in units of MHz.

Example:

[ADC]

1 512 5000 0 0.000 0.000 0.000 0.000 0

14

The example above contains an ADC with 512 samples, and dwell time of
5000ns, and no frequency and phase offsets. The frequency and phase offset
are used, for example, for RF spoiling or in-plane shifting of the FOV. Offsets
with the ’ppm’ suffix are usable for fat navigators.

2.8.4 Extensions

Extensions concept allows for implementing additional features without requir-
ing major revisions of the Pulseq format specification. Extensions can be defined
in the design tool in a good hope that the particular interpreter will know how
to handle it. The interpreter MUST detect unknown extensions and MAY chose
to ignore them. It is recommended that the interpreter issues a warning in this
case.

The EXTENSIONS section is declared with the [EXTENSIONS] keyword. Each
line in the section is an extension table entry specified by four numbers,

<id> <type > <ref > <next >

Tag Type Description

<id> integer ID of the extension list entry
<type> integer ID of the type of the extension
<ref> integer ID of the extension object
<next> integer ID of the next entry in the list

Extensions form zero-terminated single-linked list. Therefore event table [BLOCKS]
can reference a chain of extensions, which allows one to add more than one ex-
tension per block.

Extension list is followed by the actual specification of particular extensions.
The specification has the following format:

extension <STRING_ID > <type >

where

15

Tag Type Description

extension keyword Keyword specifying the beginning of the particu-
lar extension specification

<STRING_ID> integer text ID of the present extension used by the in-
terpreter to recognize the extension

<type> integer ID of the type of the particular extension, refer-
enced by the extension list

The interpreters MUST only use the STRING_ID to recognize the extensions
and do not count on particular value of the <type> parameter. The latter
is only valid within the single Pulseq file and MAY change from one file to
another, or different unique type ID values may be used by different Pulseq
export implementations.

Example:

[EXTENSIONS]

1 1 1 0

2 1 2 0

extension TRIGGERS 1

1 2 1 0 2000

2 1 3 500 100

The example above contains a specification of the TRIGGERS extension, which
is not a part of the core Pulseq format and MAY be subject to rapid changes
between revisions. Current example above specifies one cardiac trigger (id=1
type=2 channel=1) and one digital output signal (id=2 type=1 channel=3) on
the ”external trigger” channel (Siemens-specific).

Label Extension

Starting from revision 1.3.1 both Matlab Pulseq toolbox and the Siemens inter-
preter sequence support LABEL extension. The extension is intended to provide
a possibility for the pulse sequence to pass counters and flags over to the raw
data object and in this way to communicate with the image reconstruction rou-
tines.

Two types of extensions are currently defined: LABELSET and LABELINC.
The former allows one to set the counter or flag value, the latter can be used to
increment the counter (not compatible with flags). The following counters are
supported at the moment: LIN, PAR, SLC, SEG, REP, AVG, SET, ECO, PHS
that can take any integer values and flags NAV, REV, SMS, PMC, NOPOS,
NOROT, NOSLC that can be 0 or 1 corresponding to boolean ’false’ and ’true’
values.

16

At the start of the sequence all counters and flags are automatically initialized
to zero. During the run-time sequence maintains current values of all counters
and flags, which can be modified with LABELSET and LABELINC directives
at any time in the sequence. Also zero-duration blocks containing only LABEL
extension directives are allowed. The values of the counters have no immediate
effect until the next ADC directive is executed. At the moment of the ADC
event the values of the counters are recorded and in case of the Siemens in-
terpreter are copied to the ADC Data Header. Prior to the pertinent ADC
direction the values of the counters can take any arbitrary excursions, e.g. can
be negative or exceed matrix dimensions temporarily. This has no negative ef-
fects.

In case the same block contains LABELSET, LABELINC and ADC directives
the following priorities apply (independent of the order the events were submit-
ted to the block e.g. in the Matlab toolbox): First all LABELSET directives are
processed, followed by all LABELINC and only then the values of the counters
are captured and passed over to the ADC directive.

New experimental labels have been introduced in revision 1.4.1. These include
PMC, NOROT, NOPOS, NOSLC and ONCE flags (the latter explained further below).

The meaning of the flags PMC, NOROT, NOPOS and NOSLC is as follows:

ID Type Description

PMC flag Defines whether prospective motion correction (PMC) may
be applied to the current block

NOROT flag Instructs the interpreter to ignore translation components of
the FOV positioning applied through the UI on the scanner
or by the PMC processing (EXPERIMENTAL)

NOPOS flag Instructs the interpreter to ignore translation components of
the FOV positioning applied through the UI on the scanner
or by the PMC processing (EXPERIMENTAL)

NOSLC flag Instructs the interpreter to ignore FOV / gradient scaling
parameters applied through the UI on the scanner (EXPER-
IMENTAL)

Additionally, there is a three-state flag ONCE, that is intended to control the
execution flow for sequences with repetitions. It allows to implement dummy
scans, warm-up sub-sequences, calibration scans or closing-up sub-sequences.
The flag instructs the interpreter to alter the sequence when executing multi-
ple repeats as follows: blocks with ONCE=0 are executed on every repetition;
ONCE=1 marks the blocks that are only executed in the first repetition; blocks
with ONCE=2 (or any other number) are only executed in the last repetition.
When number of repetitions is equal to 1 no changes are applied.

17

Soft Delay Extension

New in revision 1.5.0 is the label extension. It provides a posibility for an
exported Pulseq file to redefine some aspects of the sequence tming at the run
time. Label extension can be used in conjunction with pure delay blocks (blocks
of non-zero duration containing no RF, gradient or ADC events). For such
blocks Soft Delay extension is able to rewrite the duration of the block at run
time based on the rule provided by the user. Typical use cases include adjusting
the cardiac delay based on the current subject pulse rate, adjusting delays in
composite pulses for MR spectroscopy or setting TE and TR for readily exported
sequences.

Example:

Extension specification for soft delays:

id num offset factor hint

.. .. us

extension DELAYS 2

1 0 -7840 2 TE

2 0 -9320 2 TE

3 0 120000 -1 TE

4 1 -126760 11 TR

5 2 0 1 TD

In the example above, line 1 defines a Soft Delay with numeric ID 0 and text ID
’TE’, with the actual block durarion calculated as D1 = TE/2−7840µs. Line 2
defines another instance of the Soft Delay with the same numeric and text IDs,
but where the delay duration is calculated as D2 = TE/2 − 9320µs. As one
can guess, these two delays facilitate the TE setting in a spin-echo sequence. A
somewhat special case is the Soft Delay define in line 3: it defines an additional
delay which makes the execution time of the inner sequence loop independent
of TE by introducing a delay with a duration D3 = 120000µs− TE. parameter
values (TE in this example) leading to negative delays are not allowed, leading
to the automatic definition of the minimal and maximum allowable TE values in
this example. Soft delay in line 4 defines the TR delay D4 = TR/11−126760µs,
from which it is easy to conclude, that it was a sequence with 11 slices. Line 5
defines the most trivial Soft Delay, where the value entered in the scanner’s UI
for the parameter marked TD is simply interpreted as the new block duration.

2.9 Shapes

The shape section is declared with the [SHAPES] keyword. Each shape is then
declared with a header followed by a list of samples values (one per line). The
end of the shape definition is declared with a blank line. Pulseq export software
may opt for storing uncompressed shapes, e.g. to avoid rounding errors during
compression/decompression or to save space for shapes that cannot be effectively

18

compressed. The reading routines must interpret the shape as uncompressed
if the number of samples in the stored shape is equal to num_samples. Therefore
the saving routine must save the shape in uncompressed format if the result of
compression has the same length as the original shape.

shape_id <id >

num_samples <num >

<sample_1 >

<sample_2 >

...

The specifiers are

Tag Type Description Units

<id> integer ID of the shape –
<num> integer Number of samples of the uncompressed

shape
–

<sample_n> integer The nth sample of the compressed shape –

When used as amplitude shapes for gradient or RF objects, the decompressed
samples must be in the normalised range of [-1, 1] (e.g. the absolute value of
the shape must be normalized to the range of [0 1]). Since the purpose of this
section is to define the basic shape of a gradient or RF pulse, the amplitude
information is defined in the events section. This allows the same shape to be
used with different amplitudes, without repeated definitions.

The number of points after decompressing all samples defined in a shape must
be equal the number declared in <num_samples>.

2.9.1 Compression

Storing every sample of the shape would lead to very large sequence descriptions.
Suppose a sequence contains a block RF pulse for 4ms and a sinusoidally-ramped
constant gradient for 100ms. Assuming sampling times of 1µs and 10µs for
the RF and gradients, respectively, 14000 samples would be required. Instead,
the shapes are compressed by encoding the derivative in a run-length
compressed format.

Example 1: A shape consisting of a ramp-up, constant and ramp-down is
encoded as follows

19

Shape Step 1 (derivative) Step 2 (compression)

0.0 0.0 0
0.1 0.1 0.1
0.25 0.15 0.15
0.5 0.25 0.25
1.0 0.5 0.5
1.0 0.0 0.0
1.0 → 0.0 → 0.0
1.0 0.0 4
1.0 0.0 -0.25
1.0 0.0 -0.25
1.0 0.0 2
0.75 -0.25
0.5 -0.25
0.25 -0.25
0.0 -0.25

Example 2: A shape with 100 zeros values

Shape Step 1 (derivative) Step 2 (compression)

0.0 0.0 0
0.0 → 0.0 → 0
· · · · · · 98
0.0 0.0

Example 3: A shape with a constant value of 1.0 for 100 samples

Shape Step 1 (derivative) Step 2 (compression)

1.0 1.0 1.0
1.0 → 0.0 → 0
· · · · · · 0
1.0 0.0 97

3 Binary files

Binary Pulseq format is not widely accepted and is poorly supported.
This section is out-of-date. The specification described in Section 22 can be
implemented as a binary file. The same general principles apply with specific
modifications outlined here. The basic structure of a binary pulseq file is de-
picted below,

20

0x01 p u l s e q 0x02

version major

version minor

version revision

section code

number of events

data

section code

number of events

data

· · ·

3.1 File and section codes

A binary Pulseq file begins with the 64 bit code 0x0170756C73657102 (the
characters pulseq enclosed by 0x01 and 0x02) followed by three integers de-
scribing the file version (major, minor, revision). The remaining file is made up
of multiple sections each with an integer section code followed by section-specific
storage. The section codes corresponding to text file tags are

Section Section code

[DEFINITIONS] 0xFFFFFFFF 0x00000001

[BLOCKS] 0xFFFFFFFF 0x00000002

[RF] 0xFFFFFFFF 0x00000003

[GRADIENTS] 0xFFFFFFFF 0x00000004

[TRAP] 0xFFFFFFFF 0x00000005

[ADC] 0xFFFFFFFF 0x00000006

[DELAYS] 0xFFFFFFFF 0x00000007

[SHAPES] 0xFFFFFFFF 0x00000008

4 Source code

This specification is distributed with source code for reading and writing the
sequences file format described here. MATLAB code is provided for detailed
sequence generation, visualisation, as well as reading and writing sequence files.
A C++ class and example program is also provided for reading sequence files.
Detailed documentation and latest updates of this code are available here:
http://pulseq.github.io/http://pulseq.github.io/.

21

http://pulseq.github.io/

5 Examples

5.1 Free induction decay

Pulseq sequence file

Created by MATLAB mr toolbox

[VERSION]

major 1

minor 5

revision 0

[DEFINITIONS]

AdcRasterTime 1e-07

BlockDurationRaster 1e-05

GradientRasterTime 1e-05

Name fid

RadiofrequencyRasterTime 1e-06

Format of blocks:

NUM DUR RF GX GY GZ ADC EXT

[BLOCKS]

1 42 1 0 0 0 0 0

2 500 0 0 0 0 0 0

3 10244 0 0 0 0 1 0

Format of RF events:

id amp mag_id phase_id time_id center delay freqPPM phasePPM freq phase use

.. Hz us us ppm rad/MHz Hz rad ..

Field 'use ' is the initial of: excitation refocusing inversion saturation

preparation other undefined

[RF]

1 833 .333 1 2 0 150 100 0 0 0 0 e

Format of ADC events:

id num dwell delay freqPPM phasePPM freq phase phase_id

.. .. ns us ppm rad/MHz Hz rad ..

[ADC]

1 1024 100000 20 0 0 0 0 0

Sequence Shapes

[SHAPES]

shape_id 1

num_samples 300

1

0

0

297

shape_id 2

num_samples 300

0

0

298

22

[SIGNATURE]

Type md5

Hash a4bfd1bd48a111f4e01219e183f4aea5

5.2 Point-resolved spectroscopy (PRESS)

Sequence Blocks

Created by JEMRIS 2.8

WARNING: this file relies on an old Pulse revision and cannot

be loaded by the current software.

It is provided here purely for illustrative purposes

[DEFINITIONS]

Scan_ID 3

Num_Blocks 8

Format of blocks:

D RF GX GY GZ ADC

[BLOCKS]

1 0 1 0 1 0 0

2 0 0 0 2 0 0

3 1 0 0 0 0 0

4 0 2 3 0 0 0

5 2 0 0 0 0 0

6 0 2 0 0 4 0

7 3 0 0 0 0 0

8 0 0 0 0 0 1

Format of RF events:

id amplitude mag_id phase_id freq phase

.. Hz Hz rad

[RF]

1 246 .863892 1 2 0 0

2 493 .727784 1 2 0 0

Format of trapezoid gradients:

id amplitude rise flat fall

.. Hz/m us us us

[TRAP]

1 200106 .3 30 3940 30

2 -201629.9 30 1940 30

3 200106 .3 30 3940 30

4 200106 .3 30 3940 30

Format of ADC events:

id num dwell delay freq phase

.. .. ns us Hz rad

[ADC]

1 256 25000 0 0 0

Format of delays:

id delay (us)

[DELAYS]

1 19000

2 46000

3 44800

23

Sequence Shapes

[SHAPES]

shape_id 1

num_samples 4000

3.856279e -11

3.588134e -08

3.588134e -08

8

2.323701e -07

2.323701e -07

8

6.188511e -07

6.188511e -07

8

1.197773e -06

1.197773e -06

8

1.970951e -06

1.970951e -06

8

2.939553e -06

2.939553e -06

8

4.104086e -06

4.104086e -06

8

5.464388e -06

5.464388e -06

8

<<truncated >>

shape_id 2

num_samples 4000

0.5

0

0

997

-0.5

0

0

1997

0.5

0

0

997

5.3 Gradient echo

Sequence Blocks

Created by JEMRIS 2.8

WARNING: this file relies on an old Pulse revision and cannot

be loaded by the current software.

It is provided here purely for illustrative purposes

24

[DEFINITIONS]

Scan_ID 2

Num_Blocks 160

Format of blocks:

D RF GX GY GZ ADC

[BLOCKS]

1 0 1 0 0 1 0

2 0 0 2 3 4 0

3 1 0 0 0 0 0

4 0 0 5 0 0 1

5 2 0 0 0 0 0

6 0 1 0 0 1 0

7 0 0 2 6 4 0

8 1 0 0 0 0 0

9 0 0 5 0 0 1

10 2 0 0 0 0 0

11 0 1 0 0 1 0

12 0 0 2 7 4 0

<<truncated >>

Format of RF events:

id amplitude mag_id phase_id freq phase

.. Hz Hz rad

[RF]

1 276 .908986 1 2 0 0

Format of trapezoid gradients:

id amplitude rise flat fall

.. Hz/m us us us

[TRAP]

1 159154 .9 30 4000 30

2 -26797 .66 10 2980 10

3 -26755 .85 10 2980 10

4 -107616.5 20 2960 20

5 25000 10 6400 10

6 -25083 .61 10 2980 10

7 -23411 .37 10 2980 10

<<truncated >>

Format of ADC events:

id num dwell delay freq phase

.. .. ns us Hz rad

[ADC]

1 32 200000 10 0 0

Format of delays:

id delay (us)

[DELAYS]

1 1760

2 184770

Sequence Shapes

[SHAPES]

shape_id 1

num_samples 4000

0.0002500625

0.0005026691

0.0005026691

25

8

0.0005072244

0.0005072244

8

0.0005113487

0.0005113487

8

0.0005150341

0.0005150341

8

0.0005182732

0.0005182732

<<truncated >>

shape_id 2

num_samples 4000

0.5

0

0

997

-0.5

0

0

1997

0.5

0

0

997

26

	1 Introduction
	1.1 Example

	2 Specification
	2.1 Overall Description
	2.2 Identification numbers
	2.3 Version
	2.4 Signature
	2.5 Definitions
	2.6 Time raster, temporal alignment and shape sampling conventions
	2.7 Blocks
	2.8 Events
	2.8.1 RF
	2.8.2 Gradients
	2.8.3 ADC
	2.8.4 Extensions

	2.9 Shapes
	2.9.1 Compression

	3 Binary files
	3.1 File and section codes

	4 Source code
	5 Examples
	5.1 Free induction decay
	5.2 Point-resolved spectroscopy (PRESS)
	5.3 Gradient echo

